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ABSTRACT

A general geostrophic equation is derived for a shallow layer of fluid on a sphere. This equation
encompasses the planetary, intermediate, and quasi-forms of geostrophy and produces their equations directly
when the appropriate parametric ordering relationships are chosen. The three regimes have proven useful for
defining and describing oceanic and Jovian eddies and currents on the planetary, intermediate and synoptic
scales respectively. The general geostrophic equation may be most useful in describing the interactions among
these three different regimes of motion and between motions in high and low latitudes. The accuracy of the
B-plane version of these equations is also examined in detail.

1. Introduction

Although most planetary motions are governed by
geostrophy, their characteristics can vary widely de-
pending on their scale relative to the deformation
radius Lg. In particular, the so-called Planetary-
Geostrophic (PG), Intermediate-Geostrophic (IG), and
Quasi-Geostrophic (QG) regimes have been identified
for the large, intermediate and synoptic scales of
motion.

In the PG regime, motions are dominated by
nonlinear divergence effects and tend to be steady

and forced (Sverdrup, 1947; Burger, 1958). In the’

QG system, wave dispersion and turbulence generally
prevail (Charney (1984). [However, coherent features
also may occur under special circumstances (Flierl,
1979).] In the IG regime, wave dispersion and non-
linear divergence act in balance to give long-lived,
coherent vortices as the innate forms of motion.
Derivations of the IG equation have been given by
Flierl (1980), Charney and Flierl (1981), Yamagata
(1982), Williams and Yamagata (1984, hereafter
wWY84). _

Connections between the PG and QG regimes are
not apparent in the traditional derivations, where
separate ad hoc scaling arguments are used. However,
a more recent derivation (WY84) has shown that the
three basic regimes, as well as a number of subregimes,
can all be derived in the same systematic manner by
assuming ordering relationships of the form ¢
= EB", § = SB™ (n = 1-4; m = 0-3) for the Rossby
number ¢ and the stratification number § in terms of
the sphericity parameter 8. This derivation also shows
that a more general form of PG system exists than
the one defined by Burger, that the IG system is
unique in parameter space, and that the interaction
between the various regimes is described by a term

common to all of them—the Jacobian for vorticity
advection.

It has been suggested that connections between the
regimes can also be deduced by taking less restrictive
ordering relationships, ones that do not involve dis-
crete powers of 8 (Cushman-Roisin, personal com-
munication, 1984). But it is not clear whether such a
procedure is consistent with the S-plane approxima-
tion where sphericity is expanded a priori in discrete
powers of 3. Doubts have also been raised as to how
accurate the S-plane approximation—which is used
in all the derivations—is for the IG system; for,
unlike the QG and PG equations which occur at
O(B) the main IG equation occurs at O(82). .

To address some of these problems, we will show
in Section 2 that there exists a general geostrophic
(GG) equation that is simpler than the primitive
equations but is parametrically general enough to
contain all three major regimes as elementary sub-
cases. (Such an equation was first derived, in a
different context and in a different form, by Anderson
and Killworth, 1979.) The equations can all be derived
in spherical coordinates, thus avoiding the S-plane
limitations. In addition, in Section 3, we will also
examine the accuracy of the S-plane approximation
in detail for the IG system because of the novelty
and importance of this regime.

The general geostrophic equation should be most
useful for studying the interactions between midlati-
tudes and the tropics and among the various regimes
(i.e., types' of motion), as well as in providing a
uniform derivation of their equation sets. Interactions
between different types of motion are normally studied

! Interactions between different scales of motion within a single
regime can also be studied by other methods, e.g., closure models
for a turbulent regime.
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via the primitive equations. However, regime inter-
actions can also be described by the hybrid equations
given by multiple-scale expansions (Pedlosky, 1984).
The latter method works for the baroclinic equations
whereas the general geostrophic approach, although
simpler, has so far only been applied to the shallow
water equations. The conditions under which IG
dynamics occur for continuously stratified fluids have
not yet been determined.

Physical interest in the various geostrophic systems
stems from their relevance to the multi-scaled oceanic
and Jovian eddies. In particular, IG dynamics helps
explain the longevity, localization, and anticyclonic
bias of Jupiter’s Great Red Spot and Ovals (WY84).
Single, solitary IG vortices can be produced by baro-
tropically unstable currents and such vortices have
been numerically simulated for periods in excess of
a century with little change occurring in their shape
or strength (Williams and Wilson, 1985). These vor-
tices occur in calculations that eliminate the physical
and computational deficiencies in the study of WY 84,
The spherical coordinate form of the GG equation is
useful for analyzing the latitudinal variation in Jovian
vortex behavior.

Speculations about Jovian vortices have also been
- made by plasma physicists using equations resembling

the general geostrophic equation (Petviashvili, 1980,
1983; Sagdeev et al, 1981; Antipov er al, 1981,
1982; Romanova and Tseitlin, 1984). Their equations
are not as complete nor as well defined as ours; nor
are they integrated, nor are any regimes nor scales of
motion delineated, but they do contain much that is
physically appropriate.

The interest of plasma physicists in the geostrophic
equation systems originates with the analogy found
between plasma drift waves and fluid Rossby waves
(Hasegawa et al., 1979), and with the analogous roles
these waves play in the turbulent cascades involved
'in plasma confinement and atmospheric jet formation
(Hasegawa and Williams, private communication—
see Hasegawa, 1980). The analogy between drift
waves and turbulence and Rossby waves and turbu-
lence is now well established (e.g. Meiss and Horton,
1983; Weinstein, 1983).

Given that analogies exist for waves and turbulence,
similarities have been sought recently (Petviashvili,
1980) between drift solitons (defined by Todoroki
and Sanuki, 1974; Makhankov, 1977) and Rossby
solitons of the IG density (not QG shear) type.
However, in a planetary atmosphere solitary waves
behave like solitons only at the Equator (Boyd, 1980;
Williams' and Wilson, 1985) while at other latitudes
they behave like coalescing vortices (WY84). No
coalescing solitary drift waves have been identified in
plasma theory or experiment, as yet, so the analogy
is incomplete. The solitary Rossby vortices produced
in laboratory fluid experiments (Antipov et al., 1981
1982)—with their anticyclonic bias, etc.—are more
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akin to the IG vortices than to the Rossby soliton
claimed by the authors. For studying Jovian vortices,
numerical simulations are far simpler and more
quantitative than fluid or plasma analogs.

2. The general geostrophic equation
a. Derivation

The simplest systenﬁ capable of describing the
geostrophic regimes is the shallow water model, whose
equations are (in dimensional form):

&+kav——Vh,

1
D ( )

h( + V '(hv) = (2)
where £ is the geopotential height and incorporates
g, the gravity or reduced gravity; where f = 2Q sinf
is the Coriolis term and D/Dt the total derivative;
where v and V are the horizontal velocity and the
horizontal divergence operator, and where k is the
unit vertical vector. Spherical coordinates are assumed.

Equation (1) can be inverted into the form:

1 Dy

v ka(Vh+Dt) 3)
If we now dssume that the geostrophic balance dom-
inates, the Dv/Dt terms are all small compared to the
others in (3), i.e. they are O(§) where £ is a small
number comparable to the Rossby number e or the
temporal number 7 (see Section 2b for definitions).
Then to O(£2), (3) can be written entirely in terms of
vé or h:

V= vg+}kx[v,g+%V(vg)2+(Vng) X.Vg],
EE ' 4)

where v¢ = f 'k X Vh is the geostrophic velocity and
the second group of terms are of O(£). This expression
simplifies to the convenient form:
v=—k><V(h+K) ! Vh, - gvg
S r? f’
where K, { are the geostrophic components of kinetic
energy and vorticity:

&)

. _—l 5.
K=5 (= 2f2(Vh)

;=k;(vxv8)=€(1[Vh).

Substitut{ng (5) into (2) yields a prediction equation
for A that involves only 4, to O(£%):

(6)

1
75 Vh[

1 —
+?(kXVK—§'Vg)]—

h,+V-hB(kah)—

)
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This can be manipulated into its simplest form:
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ol

@ (ii) (iif)

Vi) + % hs = o - () - ,C k) - o,

@®

@iv) 4]

where J(h, a) = (k X Vh)-Va = m™(ha, — hyoy) is

. the advective Jacobian; (x, y) = a(\, ), m = cosf; a
being the planetary radius; (A, 6) being the longitude
and latitude.

Equation (8) describes changes in the height field
due to geostrophic motion of any type. We shall refer
to (8) as the General Geostrophic (GG) equation for
convenience. It involves only the 4 field and its terms
describe (i) time changes, (ii) dispersion, (iii) wave
propagation and, at higher order, nonlinear diver-
gence, and (iv), (v) the geostrophic advection of
vorticity and kinetic energy. A more complex form
of this equation occurs in Anderson and Killworth
(1979)—see their Eq. (2.14).

b. Geostrophic regimes

To obtain the various regimes of geostrophic motion
that are subsets of (5) and (8), the equations must be
nondimensionalized. To do this, we introduce. the
thickness variable 7 and the mean thickness H such
that # = g(H + n) and use the scales (U, L, 7,
(LUfy/g, fo) for the variables (v, y, ¢, %, f). The
associated Rossby, stratification, sphericity and tem-
poral2 (or frequency) parameters are deﬁned as €
= U/Lfy, § = Lg*/L?, B La™! cotfy and 7 = (foT)!
where Lp = (gH )'/z/ﬁ, is the deformation radius and
6, the scaling latitude.

Equations (5) and (8) can then be written, to O(¢£2),
as:

n

=j7k><V(n+eK) 72 m—;fv )]
EACH N RN
A5 )50 o

where all variables are now nondimensional. The
three major geostrophic regimes or subsets of (10) are
glven by selecting the lowest level ordermg relation-
ships® among the parameters ¢, §, 7, and 3:

2In WY84, we chose T = L/|cs| as the most suitable time scale,
where ¢; = —BLg’ is the long-wave speed. Here we use a more
general formulation so that the f; plane cases may also be considered.

3 The only constraint on §, that (1 + én/§) > 0, is important
only for strong cyclonic motion.

1) For quasi-geostrophy, we choose 7 = §e and §
~ 1, so that (10) reduces, at O(€), to

(fz Vm) ifz N~ J(ﬂf—i) =0. (11)

On the larger QG scales, B ~ ¢ and motions are
characterized by wave propagation and dispersion,
while on the smaller QG scales 8§ ~ 0 and motions
are similar to those of two-dimensional or f; plane
fluids.

2) For planetary geostrophy, we choose 7 =
§ ~ &, so that (10) reduces at O(e), to

i+ iohe o)
_en L)
§J(f’K) 0. (12)

The most interesting form of PG motion occurs when
B ~ ¢ with wave propagation and steepening by
nonlinear divergence determining the flow form.

3) For mtermedlate-geostrophy, we choose 7
= §8, ¢ ~ §% ﬁ ~ § and retain higher order terms
(in §) so that (10) reduces to

V(%) (3

o) o

The first order terms (n,, n,) describe long wave
propagation, while the O(§) terms give the slow
changes. For the wave propagation to dominate, i.e.,
for scale separation to occur, # must be relatively
small (~S§). Thus the f variations in (13) may be of
little consequence. Alternatively, we could regard (10)
~as providing an approximate descrlptlon of IG
" flows when only the ordering relationship ¢ ~ §? is
specified.

§é and

The advection term J(»n, {/f?) occurs in all 3
regimes and provides a process through which the
regimes can interact, as well as describing scale inter-
actions within each regime. Subregimes of (11) and
(12) can be defined by choosing higher level parameter
relationships (see WY84, Table 1). The IG system in
(13), however, is unique and physically irreducible.
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¢. Midlatitudinal beta-plane forms

To derive the B-plane form of the GG equation
(10) and its subcases, it is useful to eliminate the /'
factors from inside the operators. Thus: .

(i)
__B 1+A 1+ J(n, V2
ol e f3 37 (n, V°n)
: a2
J(n,E(Vn)z)—3R=0, (14)

€
where the residual variations due to J, can be written:

KE
=[rror 1+ SR+ S ¢ <R,

m €
TN
my S
2 v n,mony 7 lmo‘ﬂy s

Ry= (D, + 2Dl)(§ (Vn)z) :

and where D, (a) = —(n./mp)a, Dy(a) = (n/mg)a, are
simple operators. The form of R is of little importance
and is given only for completeness. It can be neglected
only when 8 is small, as in the 8-plane approximation,
or in defining an alternative IG equation:

§ t ¢
nt—szVan—m—OJTZ(l +§n)17x
ﬁf3

Introducing sphencny to O(f) into (14), via the

expansions f = | + By, mg/m = | + Byy, and
retaining all second order terms gives:*

J(n, V?n) = (15)

~

s N Y S W €
7 — §(1 — 216}’)[V '(1 + g«’?)v'ﬂt - ﬂ'Y(l + g-"l)"lyt:l

- 280 - 2691 + S
T S
— S UL =361+ ﬁw)(l +5n)

X T, T~ fyn) — 5 (1~ 381 + )

1 5 § 5
X J’(n, 5 (Vn)* — 6’Yyni') —zBR=0, (16

4 Higher order sphericity expansions are considered in Section 3.
Equivalent forms of (16) are obtained if (14) is first multiplied
throughout by f3.
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where x' = myx, 'y = tan®f,, J(n, o) =  Mxtty
— o, Va = ia, + ja,. The prime superscript is
dropped hereafter for convenience. If we retain only
those terms that are significant over the three major
parametric regimes, (14) reduces to the S-plane (i.e.
v = 0) form of the general geostrophic equation
without having to specify v:

R S - . € s . €
nz—svzm—rﬂ(l —Zﬁy+—.n)nx—:e(l +~.n)
T T S

"2
X Jn, Vi) — = J(n, 5 (Vn)z) 0. (17)

All essential processes are represented in this form of
the GG equation, which thus provides the simplest
model for analytical studies of geostrophic regime
interactions. A similar equation has been derived by
Cushman-Roisin (personal communication, 1984).
For numerical studies, the basic spherical equations
are easily, rapidly, and accurately solvable (Williams
and Wilson, 1985).

For the QG, PG and IG.ordering relationships
used in (11)-(13), (17) yields the three major regime
equations as given in WY84:

n — §Vn, — % e~ J(n, V) = 0, (18)

] €
N — ij (1 + = n)nx (1 + :n)J(n, Vn)

J(n, 5 (Vn)z) =0, (19)

Nx — 23)’77):

)Im)

Oyl >

Ine—nd — [fvznt +

+ %J(n, V2n)] =0. (20)

Equations (18) and (19) represent the most general
B-plane forms of QG and PG balances, while reduced
(subregime) B-plane forms can be obtained by using
higher level ordering relationships (see WY84, Table
1, for details®).

3. Accuracy of the beta plane approximation for the
IG system

We now take a closer look at all the variables
involved in the IG system—momentum, vorticity
and potential vorticity—and examine the accuracy of
the B-plane approximation for their prediction equa-
tions. To achieve this the O(8?) terms are included

5 Where the convention é8'J(n, §) = —J' and & 'J(n, K)

—J" holds, with the right-hand side expressions being those
defined in WY84. For convenience, the meteorological malpractice
of writing K = 1v?* = 0.5 "%Vh)? rather than K = iv-v = 0.5
/7%Vh)? has been adhered to.
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in the sphericity expansions. This analysis is quite
separate from that of Section 2.

a. Sphericity expansion of the primitive equations .

We begin by writing the basic equations in the
nondimensional form:

6§E +fk Xv=—Vnp, (21a,b)
Dt
gs s Da + eg“,,v v=0, (21c)
Dt
és“%’t’+(s’+en)v-v=0, (21d)
DIl
_—= 21
D 0, (21e)

where D( )/Dt = (), + (¢/85)v-V( ) is the total
derivative, { = k-V X v the relative vorticity, {,
= f 4+ & the absolute vorticity, and II = {,/(1
+ (¢/5)n) the potential vorticity.

The sphericity is introduced into (21) by expanding
the spherical factors about values at the representative
latitude and longitude, 6, and Ag:

L1y - 2257+ 0,
sinf
cosfy 5 _ 53
=1+ fyy+ +
~os0 1+ Byy + B%6y” + O(B°),
tanf - -
= + 2
ang,~ L POV OB, @

where a(@ — 63) = Ly, a cosfp(A — No) = Lx, v

= tan’fy and & = (y/2)(1 + 7). Only those terms
needed to attain O(82) accuracy in the basic equations
have been retained. These expansions are valid when
L/a and B are less than unity. Because manipulation
of the sphericity expansions is limited and can lead
to errors (e.g., the identity cos™'8(sinf), = 1 does not
hold), it is necessary to expand the { equation in
parallel with those for ¥ and v as a checking device.

Introducing these spherical expansions and the IG
ordering relationships (¢ = EB2, § = S8, T = B,
where T now represents the slow time scale) gives
equations accurate to O(82):

SB%u, — vi, = —(1 + fyy + 326y2)(n + gﬁ"zvz) ,

X

(23a)

SB2v, + u, = —(n + g 32v2) , (23b)
y

Dia + EtV-v=0, (23c)

Dt
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-~ Dn - -
B—+ (1 +EBpV-.-v=0, (234d)
Dt

where

D

B8

+ E[(1 + Byy + B%yDu( )+ o( )],
Vev=(1+ Byy + B%y")u, + v, — vB(y + 2B6y),
&=+ Byy)e — u, + upy,
o= (1 + 8y - 82 02) + BA%
I =1+§(y—En
+ @B =B+ B0 =107, )
and where £ = ES~'. These equations can then be

expanded by writing the dependent variables in series
form, e.g.,

B v(").

ﬁMs

b. Lower-order equations
The O(1) and O(f) equations given by (23) and

- (24) are:
v® = 5,0, - (259)
u® = -0, (25b)
u,® + 1,9 =0, (25¢)
and .
o+ (1 =@ =70, (269)

u® + yu@ = -0, (26b)

ux(l) + vy(l) + v(O) - 'Y(W(O))y = 0’ (260)
771(0) + ux(l) + vy(l) - 'Y(yU(O))y = 0’ (26d)
WO -n®=0. 69

[All sets of equations are written in the same sequence
as (21) to identify their origin.] Cross differentiation
of the momentum equations (25a,b) and (26a,b) leads
to expressions identical to those in the vorticity
equations (25¢) and (26¢). Similarly, subtraction of
the height equation (26d) from the vorticity equation
(26¢) gives the same expression as the potential
vorticity equation (26e). Thus, at these levels of 8, all
the equations are mutually consistent.

¢. Higher-order equations

The O(5?) equations can be written, after some
algebra, as:
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Su® — [va) + D 4 EFOyO — % yzv(O)]
_(2) E (0)y2 (1) 0)
|7 S OO T = oy, (272)
X
Sv© + [ua) + yu® + EfOy© — % yzuw)]
—I:n‘z) +3 (V‘O’)Z:I , (27b)

) y
[SV0,© + EJn®, V) + 12 + 0,2 + 7,

=201 + [y — o) — 8y 9),] =

(27c)
1 + 779 + 1@ + @ — EnOn O]
+ IYOu — o) — 8,1 = 0, (27d)
n7® — En©@y,© — 572 © 4 2pp ©
S EI®, ) = [ = 1L (27)

In this set, the potential vorticity equation (27¢)—
the so called IG equation—is consistent with the
vorticity and height equations and equals their differ-
ence. In contrast, cross differentiation of the momen-
tum equations yields a vorticity equation that differs
from (27¢c) by a term y*2@ originating in the term
yyn Y in (27a). The 4? term is only significant when
6y = 45°. This -inconsistency illustrates the danger
involved in multiple differentiation of the approxi-
mated sphericity factors, particularly of the /! forms
prevalent in the equations.

The derivation of the vorticity equation (27¢) is
not completely independent of the momentum equa-
tions as it involves using (26a). However, as no

differentiation of spherical factors is involved and as

all the O(B) equations are mutually consistent, (27¢)
is thus the correct version of the vorticity equation.
To avoid errors, it appears to be advisable that the
vorticity equation always be expanded in parallel
with -the momentum equations, even though this
could involve some redundancy at the lower orders
of expansion. The potential vorticity equation (27¢)
is identical with the form (17) derived directly from
the spherical GG equation.

d. Simpler derivation of I1 equation

The basic IG equations (26e) and (27¢) can be
derived simply and directly from the potential vorticity
equation, (21e), by following the procedure of Section
2 in which we ﬁrst deﬁne the geostrophic wind
components 1% = = —m, and then expand
them as v¥ = v + ﬁv(') + O(B?). Substitution in the
" momentum equations (23a, b) reveals that the total
velocity can be written, to O(82), as:
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v = [1 = 6 = Y + futh,

u=[1-Byju®+ fuh. (28)
Then the total derivative can be defined, to O(f), in
a simple Jacobian form: ) '

DA “
i =A,+ BAr

+{[1 = B(1 = VYW, 4) + BIn®, 4)}, (29)
where J = EJ. Applying this operator to the O(32)

" potential vorticity

=1+ 8y - Eq9)

yields (27e), after two terms of the form ++yyv® have
been cancelled out. Although this derivation is simpler
than that in Section 3c, it is less revealing of the
limitations and inconsistencies.

e. Beta-plane accuracy

From the above, Sections (b)-(d), we see that y
factors occur in all of the v, ¢, 7 equatlons at O(B8)
and O(6?) but that they do not occur in the II
equatlon (27e). Thus the B-plane approximation,
given by setting vy = 0 is valid for the potential
vorticity at O(32) but for the other variables it attains
only an O(y) accuracy. In the QG system, a similar
dependence on <y occurs (Lipps, 1964; Pedlosky 1979,
p. 322) but no inconsistency of the 0(72) type arises
because O(B2) terms are not necessary and multiple
differentiation -of sphericity factors is not involved.

4. Discussion

We have shown that a general geostrophic equation
for the potential vorticity can be derived in either
spherical (8) or midlatitudinal 8-plane (17) form. The
equation contains the three major geostrophic regimes
as subsets and provides a uniform derivation of their
governing equations. The equatlon also describes the
interactions among the various regimes and between
the various regions. The GG equation (8) also applies
to geostrophic motion in low latitudes where it can
be approximated by an equatorial 3-plane and can
then describe, for example, the Rossby solitons dis-
cussed by Boyd (1980)—see Williams and Wilson
(1985) for details.

For the shallow water system, it does not appear
to be necessary to resort to multiple-scale methods
for dealing with regime interactions. That method
may, however, be essential for dealing with continu-
ously stratified, baroclinic fluids (Pedlosky, 1984).
Whether baroclinic versions of the GG and IG equa-
tions exist remains an interesting problem for future
research.



15 JUNE 1985

The B-plane approximation is as valid for the IG
regime as it is for the QG regime, i.e., only the
equation for potential vorticity is fully accurate.
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